1.太湖流域多年来污染物变化特征研究
(1)研究进展与取得成绩
湖泊沉积物能够保存由流域土壤污染、水体污染和大气污染等引发的湖水生态环境和沉积环境变化等的丰富信息。太湖近百年来污染物(多环芳烃、重金属等)污染状况与人类活动强度关联性很强,总体随着人类活动增强而加重。结合污染物的历史浓度变化特征及历史经济发展变化,太湖流域污染物堆积大致可分为四个时间段(图1):~1955年,沉积物中各污染物浓度均很低,保持稳定,基本上反映出当时的污染物背景值;1955-1978年,多环芳烃、重金属等污染物的浓度表现出轻微的波动,此时间段为中国经济的探索前进期;1980-2003年,污染物浓度整体上大幅度上升,这与中国实施改革开放政策相吻合,经济飞速发展,能源消耗量剧增;2003-至今,多环芳烃、重金属等浓度显著减弱,表明在各种环境保护措施下,环境污染得到了一定的抑制。太湖沉积物中多环芳烃和重金属铅(Pb)的产生在很大程度上受到煤炭和石油燃烧及工业发展等人类活动的影响,并且随着人类活动的增强,该影响会增大,这也在Pb同位素特征上有所展现。沉积物中多环芳烃和Pb在物质来源上具有相似性,都以石油化石类燃烧源为主。
图1 太湖典型有机、无机污染物历史浓度重建
通过神经网络模型(BPANN)的分析可知,近年来环境保护作用对研究区污染物的控制效果显著。随着各项环境法律法规及保护措施的实施,对比2003年湖泊沉积物中重金属(Cd)浓度,2015年减少率达到了52%,沉积物重金属浓度下降了一半;沉积物中苯并芘浓度在2015年减少率达到了89%,沉积物中的大部分苯并芘得到抑制。如果研究区继续在“粗放型”模式下发展经济,沉积物中Cd和苯并芘(BaP)的浓度在2030年将分别增加152%和766.1%。因此,未来应继续加强环保力度和资金投入。我们利用此方法对中国湖泊、典型发达国家湖泊(美国、英国等)以及典型发展中国家湖泊(印度、巴西等)进行了分析(图2),发现中国意识到环境问题以及采取相关措施的时间相比美国、英国等发达国家大概晚了30-50年,目前中国仍然以煤炭为主,石油其次,天然气和可再生能源占比较小。
图2 湖泊沉积柱中多环芳烃和Pb的历史浓度变化(A,中国湖泊多环芳烃历史浓度重建; B, 典型发达国家、发展中国家湖泊多环芳烃历史浓度重建; C, 中国与其他国家湖泊沉积物Pb历史浓度重建)。
(2)研究成果
相关研究成果以学术论文形式发表在多个国际高质量SCI期刊上,具体论文信息如下:
Yan Li, Ping Gong*, Dejun Wan, Jiang Jiang, Xiaoping Wang*.On the environmental problems in the process of China's economic development[J]. One Earth, 2025.04.(预投)
Ning Li, Zhonghua Zhao*, Lu Zhang, Huanchao Zhang, Genmei Wang, Xuefeng Xie, Ke Liu, Zhenyi Jia, Xinyu Cheng, Jiale Wen, Yan Li*. Historical sources and ecological risk trends of typical toxic pollutants in sediments from Taihu Lake, Yangtze Delta, China[J]. Ecological Indicators, 2024,159:111679.
Haoran Huang, Hang Su, Xiang Li, Yan Li*, Ke Liu, Xuefeng Xie. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of the tropical region in southern China[J]. Environmental Geochemistry and Health, 2024,46:234-241.
Yan Li*, Shenglu Zhou, Zhenyi Jia, Ke Liu, Genmei Wang. Temporal and spatial distributions and sources of heavy metals in atmospheric deposition in western Taihu Lake, China[J]. Environmental Pollution, 2021,284:117465.
Genmei Wang, Yan Li*, Junxiao Wang, Zhenyi Jia, Yujie Zhou, Shenglu Zhou, Xuefeng Xie. A modified receptor model for historical source apportionment of polycyclic aromatic hydrocarbons in sediment[J]. Science of The Total Environment, 2020:134931.
Yan Li, Genmei Wang*, Junxiao Wang, Zhenyi Jia, Yujie Zhou, Chunhui Wang, Yanyan Li, Shenglu Zhou*. Determination of influencing factors on historical concentration variations of PAHs in West Taihu Lake, China[J]. Environmental Pollution, 2019(249):573-580.
Yan Li, Shenglu Zhou*, Zhenyi Jia, Liang Ge, Liping Mei, Xueyan Sui, Xiaorui Wang, Baojie Li, Junxiao Wang, Shaohua Wu. Influence of industrialization and environmental protection on environmental pollution: a case study of Taihu Lake, China[J]. International Journal of Environmental Research & Public Health, 2018, 15(12): 2628.
Yan Li, Shenglu Zhou*, Qing Zhu, Baojie Li, Junxiao Wang, Chunhui Wang, Lian Chen, Shaohua Wu. One-century sedimentary record of heavy metal pollution in western Taihu Lake, China [J]. Environmental Pollution, 2018, 240(1):709-716.
Yan Li, Liping Mei, Shenglu Zhou*, Zhenyi Jia, Junxiao Wang, Baojie Li, Chunhui Wang, Shaohua Wu. Analysis of Historical Sources of Heavy Metals in Lake Taihu Based on the Positive Matrix Factorization Model[J]. International Journal of Environmental Research & Public Health, 2018, 15(7):1540.
Yujie Zhou, Shenglu Zhou*, Sophia Shuang Chen, Yan Li, Long Chen, Qi Zhang, Bo Su, Teng Wang. Sedimentary record of microplastics in coastal wetland, eastern China[J]. Water Research, 2024,249:120975.
Teng Wang, Baojie Li*, Hong Liao**, Yan Li. Spatiotemporal distribution of atmospheric polycyclic aromatic hydrocarbon emissions during 2013–2017 in mainland China[J]. Science of the Total Environment, 2021, 789:148003.
Ye Li, Ye Huang*, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao. Temporal and spatial variations of atmospheric unintentional PCBs emissions in Chinese mainland from 1960 to 2019[J]. Atmospheric Chemistry & Physics, 2022(23):1091–1101.
(3)科学意义
中国在改革开放后进入了经济快速发展时期,城市化和工业化程度日益增强。与此同时,伴随经济发展而来的环境污染问题也日益严重。多环芳烃和重金属通过大气扩散、流水运输等各种途径进入周围环境中,通过与人体皮肤和呼吸的直接吸收、手口的间接输入等进入人体,给人体健康带来严重威胁。多环芳烃和重金属在沉积环境中相对稳定,由于水体缺氧和密闭环境而难以被降解,密封在沉积物中的多环芳烃和重金属在水体受到扰动时会被释放到水体中,从而造成再次污染。太湖作为我国最大经济体—长三角经济区的重要淡水湖泊,其环境质量直接影响到该地区的人体健康和经济可持续发展。沉积物中污染物的浓度和通量可以反映出对应时期区域的污染状况,而太湖域的历史污染状况和特征规律,可以为区域未来几十年的污染预测和环境治理提供理论依据。另外,随着环境污染问题的日益严重,国家也采取了很多措施来缓解环境污染问题。然而,这些措施是否发挥了作用以及这些作用所达到的程度都是未知的。中国作为典型的发展中国家,其经济发展过程中的环境污染问题与其它发展中国家、发达国家是否一致,相关研究还比较少,并且缺乏定量研究。整体上,申请人已完成:(1)重建了太湖流域近几十年来环境中多环芳烃和重金属等污染物的历史浓度;(2)对比分析了中国湖泊污染物历史污染状况与其它国家的差异;(2)量化了改革开放后环境保护措施对污染物控制的作用。量化了环境保护措施所带来的效应,相关部门就能够清楚的度量经济发展所带来的环境问题,这将为太湖流域以及中国绿色经济发展起到指引作用。
2. 太湖污染物来源解析以及对当地微生物影响研究
(1)研究进展与取得成绩
从污染源上探究多环芳烃和重金属污染是湖泊污染防控的重要前提。然而,污染物源解析的应用仍然存在很多问题,例如,运用受体模型提取主要因子后,一般都是凭借前人经验或者因子的元素特征对污染源进行识别,往往忽略了研究区工业结构等实际情况,人为主观性过大,特别是在研究区尺度较大的情况下,这会导致污染物源解析在起初就产生很大的不确定性;母质的空间异质性也会导致假设不适用,在污染源成分的判别上就产生很大误差,使得污染物源解析更加复杂。针对上述问题,我们通过计算污染物排放清单数据来代替提取的主要成分,也对较大的研究区按照行政管理区进行划分,解析每个区域内污染物的来源。结果表明,无论是正定矩阵(PMF)还是绝对主成分-线性回归模型(APCA-MLR),改进后的受体模型在解析精度上均显著提升(图3)。我们通过对太湖污染物进行同位素溯源,来验证改进的受体模型解析结果是否合理,结果显示两者对污染物的来源识别以及量化数据均一致。同时,我们也将改进后的污染物源解析受体模型应用到土壤、降尘等环境介质中,研究结果均显著优于传统模型。
图3 太湖沉积物多环芳烃源解析受体模型方法对比(PMF-PC为改进受体模型)
为了更进一步探究太湖微生物对各类污染物的响应,申请人已经对太湖不同湖区的好氧微生物进行了培养,用平板计数法测定好氧细菌数量,对比分析了太湖不同湖区好氧微生物的特征;同时结合表层沉积物微生物16S rRNA测序得到细菌群落的相对丰度空间分布特征、功能丰度特征(图4),发现表层沉积物中细菌群落OUT(3634±216.5),来自于36门87纲,Proteobacteria门相对丰度最大,相对丰度范围为23.18% ~ 40.64%。从微生物空间分布预测结果中发现,在太湖中微生物门Proteobacteria、Nitrospirae、Firmicutes、Verrucomicrobia和Patescibacteria的空间分布格局符合由碳氮主导的空间分布格局。这些微生物门占据测定微生物的58.57%,说明在太湖中微生物主导因素是碳氮养分,微生物空间上主要对养分做出响应。通过上述研究,发现太湖微生物生命活动具有碳氮导向性,并且其数量和群落结构在空间上存在一定差异。
图4 太湖沉积物微生物群落特征及主要影响因素
(2)研究成果
相关研究成果以学术论文形式发表在多个国际高质量SCI以及国内高水平期刊上,具体论文信息如下:
Yan Li*, Huang Su, Xiang Li, Jiale Wen, Ning Li, Chengjun Ge*, Jiang Jiang*. Distribution characteristics of black carbon in Taihu Lake sediments and their effects on microorganisms. Journal of Cleaner Production, 2024.12(大修)
程新宇, 李岩*, 李晔, 王艮梅, 张焕朝, 温佳乐, 李柠, 虞叶, 叶子, 郑捷翔, 李志龙, 刘敏. 太湖沉积物好氧细菌空间分布与氮磷来源及风险[J]. 环境科学, 2023,44(10):5546-5555.
Dike Feng, Ping Gong, Yan Li*, Ning Li, Zhen Dong, Ziyue Zhu, Ruihao Jiang, Siyun Deng. Risk assessment and source apportionment of heavy metals pollution from atmospheric deposition in Nanjing, China[J]. Heliyon, 2023,9(8):e18858.
Yan Li, Ye Li*, Ye Huang, Tianhao He, Ruihe Jin, Mingzhe Han, Yue He, Min Liu*. An improved hybrid model on source-risk of polycyclic aromatic hydrocarbon in soils of the Yangtze River Delta urban agglomeration[J]. Science of The Total Environment, 2023, 857:159336.
Qingbin Fan, Yan Li*. Enrichment of rosmarinic acid from Salvia przewalskii Maxim. leaves using macroporous resin: Adsorption/desorption behavior, process optimization followed by scale-up[J]. Industrial Crops & Products, 2023, 191: 115931.
Ning Li, Yan Li*, Jiaxiang Wei, Ke Liu, Genmei Wang, Huanchao Zhang, Jiale Wen, Xinyu Cheng. Source-oriented ecological risk assessment of heavy metals in sediments of West Taihu Lake, China[J]. Environmental Science & Pollution Research, 2022: 1-11.
Yan Li*, Ning Li, Xiangling Zhang, Ke Liu, Zhenyi Jia, Genmei Wang. A modified receptor model for source apportionment of sediment polycyclic aromatic hydrocarbons[J]. Journal of Environmental Management, 2022,318(48):115637.9.
Ning Li, Yan Li*, Shenglu Zhou, Huanchao Zhang, Genmei Wang. Source Apportionment and Health Risk Assessment of Heavy Metals in Endemic Tree Species in Southern China: A Case Study of Cinnamomum camphora (L.) Presl[J]. Frontiers in Plant Science, 2022,13:911447.
Ning Li, Yan Li*, Genmei Wang*, Huanchao Zhang, Xiangling Zhang, Jiale Wen, Xinyu Cheng. The sources risk assessment combined with APCS/MLR model for potentially toxic elements in farmland of a firsttier city, China[J]. Environmental Science & Pollution Research. 2022, 3(03):19325-5.
Yan Li*, Shenglu Zhou, Zhenyi Jia, Ke Liu, Genmei Wang. Temporal and spatial distributions and sources of heavy metals in atmospheric deposition in western Taihu Lake, China[J]. Environmental Pollution, 2021,284:117465.
Yan Li*, Shenglu Zhou, Ke Liu, Genmei Wang, Junxiao Wang. Application of the APCA-MLR receptor model for the source apportionment of char and soot in sediments[J]. Science of the Total Environment, 2020, 141165.
Genmei Wang, Yan Li*, Junxiao Wang, Zhenyi Jia, Yujie Zhou, Shenglu Zhou, Xuefeng Xie. A modified receptor model for historical source apportionment of polycyclic aromatic hydrocarbons in sediment[J]. Science of The Total Environment, 2020:134931.
Yan Li, Shenglu Zhou*, Qing Zhu, Baojie Li, Junxiao Wang, Chunhui Wang, Lian Chen, Shaohua Wu. One-century sedimentary record of heavy metal pollution in western Taihu Lake, China [J]. Environmental Pollution, 2018, 240(1):709-716.
Yan Li, Liping Mei, Shenglu Zhou*, Zhenyi Jia, Junxiao Wang, Baojie Li, Chunhui Wang, Shaohua Wu. Analysis of Historical Sources of Heavy Metals in Lake Taihu Based on the Positive Matrix Factorization Model[J]. International Journal of Environmental Research & Public Health, 2018, 15(7):1540.
Ye Li, Tianhao He, Fangfang Ding, Xiaofei Li, Ye Huang, Erkai He, Hongming Cai, Peili Shi, Jian Liu, Yan Li, Ruijuan Qu, Wang Zheng, Yunfeng Xie, Xingmei Liu, Ling Zhao, Min Liu. The inventory of pollutants in brownfield sites: An innovative strategy for prevention and control of soil pollution in China[J]. Science Bulletin, 2024 Mar 15;69(5):566-569.
Yujie Zhou, JunxiaoWang, Mengmeng Zou, Qiqi Yin, Yifei Qiu, Chengqiang Li, Bei Ye, Tianwei Guo, Zhenyi Jia, YanLi, Chunhui Wang, Shenglu Zhou*. Microplastics in urban soils of Nanjing in eastern China: Occurrence, relationships, and sources[J]. Chemosphere, 2022: 134999.
Qingbin Fan, Jie Liao*, Yan Li, Wei Ye, Tao Wang, Xiao Feng. Origin and Paleoenvironmental Significance of the Old Red Sand Along the Southeast Coast of China[J]. Frontiers in Earth Science, 2021: 395.
Ping Li, Tao Wu, Guojun Jiang, Lijie Pu, Yan Li, Jianzhen Zhang, Fei Xu, Xuefeng Xie*. An integrated approach for source apportionment and health risk assessment of heavy metals in subtropical agricultural soils, Eastern China[J]. Land, 2021, 10(10):1016.
Qing-bin Fan, Jie Liao*, Yan Li, Wei Ye, Tao Wang, Xiao Feng. Quartz grain surface microtextural evidence for provenance of the Quaternary aggradation red earth deposit, southern China[J]. Journal of Mountain Science, 2021, 18(8):2048-2060.
Zhenyi Jia, Junxiao Wang**, Xiaodan Zhou, Yujie Zhou, Yan Li, Baojie Li, Shenglu Zhou*. Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China[J]. Environmental Pollution, 2020, 256: 113505.
Baojie Li, Junxiao Wang*, Shaohua Wu, Zhenyi Jia, Yan Li, Teng Wang, Shenglu Zhou*. New method for improving spatial allocation accuracy of industrial energy consumption and implications for polycyclic aromatic hydrocarbon emissions in China[J]. Environmental Science & Technology, 2019, 53(8): 4326-4334.
(3)科学意义
随着中国工业化的快速发展,电子产业、化工厂和加工业等各类工业的数量和产量也迅速飙升,生产过程中的部分污染物会不可避免的进入环境中。同时,大量研究表明,我国每年向环境中排放大量持续性有机污染物以及重金属等污染物,对生态环境安全构成严重威胁。对沉积环境中的污染物进行污染源定性分析,从而准确的判定污染物主要来源于哪一类行业;定量解析污染物的来源,进一步分析出各类污染源的污染贡献量,这不仅是湖泊沉积物污染研究的前提条件,也将为地方政府对特定污染行业和污染物排放的管控提供理论依据。因此,定性和定量解析沉积物中污染物的来源对于湖泊污染的精准管控具有重要的科学指导意义。利用微生物菌群治理污染是未来污染防治的主要手段,了解太湖表层沉积物微生物菌群的群落结构特征、生物量的空间分布以及与多环芳烃和重金属等污染物的空间分布关联,有助于促进利用微生物对太湖污染治理措施的实施。
3. 太湖典型污染物风险评估及污染区域识别方法研究
(1)研究进展与取得成绩
在前期研究中,申请人探究了太湖沉积物中重金属和PAHs的空间分布特征,发现距离岸边较近的区域污染物浓度普遍较高,而在太湖中部区域污染物浓度较低。通过使用墨兰指数分析了沉积物重金属和PAHs的空间交互作用,结合污染物来源解析以及沉积物汇属性特征解释了空间交互作用的原因,最终建立了一种复合污染分区的方法。重金属风险管控区主要分布在太湖西部,占总面积的22.5%,而PAHs风险管控区占比最小,只占总面积的3.4%。另外,申请人通过使用K-均值聚类分析方法对沉积物不同属性指标进行聚类分析,依据聚类分析结果将沉积物分为3类,判定为潜在高污染风险区域、潜在中风险区域和潜在低风险区域,并且所占比例分别为:5.6%, 27.6%和66.8%。通过建立一种基于沉积物源-汇聚类(SLISA-SCA)的潜在有毒风险区识别方法,结合建立的沉积物综合风险评估新方法SLISA-SCA,我们精准识别和划分了太湖沉积物各重金属存在的风险状况(图5)。
图5 太湖沉积物污染物富集能力(a)与生态风险评估(b)
为了进一步拓宽上述建立污染物风险评估模型的应用,我们采集了分布在中国典型区域的土壤样品750个,并测试了有机燃烧类污染物(COP)含量(黑碳,多环芳烃等),其中拉萨主城区土壤COP含量明显低于长三角城市群和南阳市等。中国土壤中黑碳,尤其是烟炱,其分布主要集中在中国南部和东部等区域,由于其吸光效应将直接影响到该区域的气候变化。值得注意的是,大部分青藏高原区域土壤里PAHs含量均较高,而作为“世界第三极”,青藏高原将面临前所未有的危机。我们利用上述建立的污染物风险评估模型,对中国土壤COP综合污染风险进行评估、预测(图6),并识别出中国土壤中COP的污染风险区域(风险管控区域和高风险管控区域),共占面积38.9%。该研究成果将为中国乃至全球土壤的清洁生产以及可持续发展提供重要的技术支撑。
图6 中国的土壤污染物COP风险区划图 (A)中国土壤污染物黑碳的生态风险空间分布图,(B)中国土壤污染物多环芳烃的生态风险空间分布图,(C)中国土壤污染物黑碳和多环芳烃含量的空间关联特征分布图,(D)中国的土壤污染物COP综合风险区划图。
(2)研究成果
相关研究成果以学术论文形式发表在多个国际高质量SCI以及国内高水平期刊上,具体论文信息如下:
Yan Li, Hang Su, Yang Lan, Xiang Li, Ke Liu, Yongming Han*. Spatial distributions and historical sources of combustion organic carbons in Taihu Lake, China. Journal of Hydrology, 2025.02.(在审状态).
Yan Li, Haoran Huang, Ye Li*, Zi Ye, Ke Liu, Min Liu*, Lei Liu, Jiang Jiang*. Characterizing soil Cops Eco-risk in China[J]. Journal of Hazardous Materials, 2025 (489) :137588.
Yan Li*, Ke Liu, Zhenyi Jia. Assessment of anthropogenic pollution as a cause of forest disturbance. Frontiers in Forests and Global Change, 2024 (7) :1404080.
Ning Li, Zhonghua Zhao*, Lu Zhang, Huanchao Zhang, Genmei Wang, Xuefeng Xie, Ke Liu, Zhenyi Jia, Xinyu Cheng, Jiale Wen, Yan Li*. Historical sources and ecological risk trends of typical toxic pollutants in sediments from Taihu Lake, Yangtze Delta, China[J]. Ecological Indicators, 2024,159:111679.
Dike Feng, Ping Gong, Yan Li*, Ning Li, Zhen Dong, Ziyue Zhu, Ruihao Jiang, Siyun Deng. Risk assessment and source apportionment of heavy metals pollution from atmospheric deposition in Nanjing, China[J]. Heliyon, 2023,9(8):e18858.
Yan Li*, Zi Ye, Ye Yu, Ye Li**, Jiang Jiang, Liangjie Wang, Min Liu**. A Combined Method for Human Health Risk Area Identification of Heavy Metals in Urban Environments[J]. Journal of Hazardous Materials, 2023:131067.
Yan Li, Ye Li*, Ye Huang, Tianhao He, Ruihe Jin, Mingzhe Han, Yue He, Min Liu*. An improved hybrid model on source-risk of polycyclic aromatic hydrocarbon in soils of the Yangtze River Delta urban agglomeration[J]. Science of The Total Environment, 2023, 857:159336.
Yan Li*, Dike Feng, Meiying Ji, Zhanpeng Li, Ruocheng, Zhang, Chenwei Gu. The risk characteristics of heavy metals in urban soil of typical developed cities in China[J]. Environmental Monitoring & Assessment, 2022, 194(132).
Ning Li, Yan Li*, Jiaxiang Wei, Ke Liu, Genmei Wang, Huanchao Zhang, Jiale Wen, Xinyu Cheng. Source-oriented ecological risk assessment of heavy metals in sediments of West Taihu Lake, China[J]. Environmental Science & Pollution Research, 2022: 1-11.
Yan Li*, Xinyu Cheng, Ke Liu, Ye Yu, Yujie Zhou. A new method for identifying potential hazardous areas of heavy metal pollution in sediments[J]. Water Research, 2022,119065.
Ning Li, Yan Li*, Shenglu Zhou, Huanchao Zhang, Genmei Wang. Source Apportionment and Health Risk Assessment of Heavy Metals in Endemic Tree Species in Southern China: A Case Study of Cinnamomum camphora (L.) Presl[J]. Frontiers in Plant Science, 2022,13:911447.
Yan Li*, Zhen Dong, Dike Feng, Zhenyi Jia, Qingbin Fan, Ke Liu, Xiaomian Zhang. Study on the risk of soil heavy metal pollution in typical developed cities in eastern China[J]. Scientific Reports, 2022,12(1):3855.
Ning Li, Yan Li*, Genmei Wang*, Huanchao Zhang, Xiangling Zhang, Jiale Wen, Xinyu Cheng. The sources risk assessment combined with APCS/MLR model for potentially toxic elements in farmland of a firsttier city, China[J]. Environmental Science & Pollution Research. 2022, 3(03):19325-5.
Yan Li*, Shenglu Zhou, Zhenyi Jia, Ke Liu, Genmei Wang. Temporal and spatial distributions and sources of heavy metals in atmospheric deposition in western Taihu Lake, China[J]. Environmental Pollution, 2021,284:117465.
Yan Li, Xiaoping Wang, Ping Gong*. Combined risk assessment method based on spatial interaction: A case for polycyclic aromatic hydrocarbons and heavy metals in Taihu Lake sediments[J]. Journal of Cleaner Production, 2021, 328(2):129590.
Tianhao He, Ye Li*, Ye Huang, Erkai He, Yan Li, Liangyu Qu, Fangfang Ding, Ruihe Jin, Mingzhe Han, Lina Yuan, Weizhen Xue, Ruijuan Qu, Wang Zheng, Yunfeng Xie, Xingmei Liu, Ling Zhao, Min Liu*. Simulation and risk assessment of arsenic by Hydrus-3D and CalTOX in a typical brownfield site[J]. Journal of Hazardous Materials, 2023,448:130892.
Ping Li, Tao Wu, Guojun Jiang, Lijie Pu, Yan Li, Jianzhen Zhang, Fei Xu, Xuefeng Xie*. An integrated approach for source apportionment and health risk assessment of heavy metals in subtropical agricultural soils, Eastern China[J]. Land, 2021, 10(10):1016.
Yujie Zhou, Junxiao Wang, Mengmeng Zou, Zhenyi Jia, Shenglu Zhou*, Yan Li. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks[J]. Science of the Total Environment, 2020, 748:141368.
Zhenyi Jia, Junxiao Wang**, Baojie Li, Yan Li, Yujie Zhou, Guijie Tong, Daohao Yan, Shenglu Zhou*. An integrated methodology for improving heavy metal risk management in soil-rice system[J]. Journal of Cleaner Production, 2020, 273:122797.
Chunhui Wang, Junxiao Wang, Shenglu Zhou, Junhong Tang, Zhenyi Jia, Liang Ge, Yan Li, Shaohua Wu. Polycyclic aromatic hydrocarbons and heavy metals in urban environments: Concentrations and joint risks in surface soils with diverse land uses[J]. Land Degradation & Development, 2020, 31(3): 383-391.
Zhenyi Jia, Junxiao Wang**, Xiaodan Zhou, Yujie Zhou, Yan Li, Baojie Li, Shenglu Zhou*. Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China[J]. Environmental Pollution, 2020, 256: 113505.
Lian Chen, Shenglu Zhou*, Yaxing Shi, Chunhui Wang, Baojie Li, Yan Li, Shaohua Wu. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested[J]. Science of the Total Environment, 2018, 615:141-149.
(3)科学意义
太湖作为我国最大经济区—长三角经济区的重要淡水湖泊,其环境质量直接影响到该地区人体健康和经济可持续发展。如果太湖受到污染,则会影响到整个长三角经济区的生态环境安全。随着长三角地区经济的高速发展,已经给太湖造成了一定程度的污染,太湖污染防控已迫在眉睫。太湖污染防控的核心任务就是合理评估污染物的风险等级,精准识别其污染风险区域,并对污染物进行有效的风险预警,这也是对太湖污染的精准治理以及高效预防的关键。我们建立的两种污染物风险评估体系:(1)复合污染物的生态风险评估方法;(2)基于源-汇的单一污染物风险评估方法,为太湖以及其他河流、湖泊的污染防控提供了重要的技术支撑和理论支持。